Titanous Ions Destroy Perchlorates

Joseph E. Earley, Sr.
Giulio Amadei and Daniel Tofan
Georgetown University
Washington, DC 20057

Summary

- Last year, in New Orleans, we reported that, in ethanolic media, Ti^{III} reduces perchlorate rather rapidly.
- Evidence indicates an intermediate with two Ti^{III} centers.
- We have designed catalysts based on these results. (Patent applied for.)
- Development opportunities exist.

Perchlorato-Cull complex

Lewis, Hatfield, Hodgson, Inorg. Chem. 13, 1974, 147.

Two Old Ligands

Two New Ligands

Ligands Influence Spectra

Suggestions of Dinuclear Ions

- Pecsok & Fletcher (*Inorg. chem. 1962, 1, 155*)
 observed that absorption between 730 nm
 and 800 nm (due to polymers?) slowly
 developed in Ti(III) solutions of pH 3.9.
- Absorption observed in this spectral region for our systems suggests the presence of dinuclear Ti(III) species.
- Absorption at 778 nm of Ti^{III} complexes followed the trend: TADP3 > CYCAPAB > DADP3 ≅ HEDTA >> Aquoion.

The Ti^{III}L- CIO₄⁻ Reaction

- With reductant in excess, the initial product is chlorate, the final product is chloride.
- With perchlorate in excess, disappearance of Ti^{III} is exponential in time.
- First order rate constant is proportional to perchlorate concentration.

Acid Catalysis

- Pseudo-first order rate constants increase as [H+] increases.
- Curvature indicates contribution from a rate-law term second order in [H+].
 k_{obs} = k₀ + k' [H+]²
- At [H+] = 432 mM, rate constants (k) are:
 - TADP3 (158) > CYCAPAB (86) > DADP3 (48) \geq HEDTA (44) > H₂O (1)
- Species that absorb strongly at 778 nm react rapidly, suggesting a dinuclear complex as intermediate.

Acid Catalysis Is Nonlinear

An Unusual Kinetic Feature

- Each run yields a first-order rate constant.
- But, strangely enough, the value of that constant increases as [Ti^{III}] increases.
- A mechanism involving a dinuclear intermediate models this behavior.

Mechanistic Model

$$Ti^{III} + L \leftrightarrow Ti^{III}L$$
 k_{1f}, k_{1r}
 $2 Ti(III)L \leftrightarrow Ti_{2}L_{2}$ k_{2f}, k_{2r}
 $Ti_{2}L_{2} + ClO_{4}^{-} \rightarrow ClO_{3}^{-} + \dots$ k_{3}

$$k_{1f} = 1000;$$
 $k_{1r} = 2000;$

$$k_{2f} = 1000;$$
 $k_{2r} = 0.1;$ $k_{3} = 0.1;$

Initial particles = 8000.

The Model Fits

Synthesis of Functionalized TADP3

11,23-Dihydroxicarbonyl-25,26-dihydroxy-3, 7, 15, 19-tetraazatriciclo[19.3.1.19,13]hexacosa-1(25), 9(26), 10, 12, 21, 23-hexaene

- ■13C-NMR (DMSO d_s): 168.1; 154.2; 133.1; 121.3; 120.2; 44.08; 42.00; 23.19.
- •Elemental Analysis:

Found: C: 32.98; N: 6.54; Br: 36.71; H: 6.95.

Calculated $[C_{24}H_{34}N_4O_6*4HBr*3H_2O]$ C: 33.17; N: 6.45; Br: 36.78; H: 7.03.

TADP3-PVA Semi-Solids* OH Semi-Solids*

- Polyvinyl alcohol is the solid support of choice (<MW> 50-85 Kdal, 97% hydrolyzed)
- Preliminary experiments showed that perchlorate ions are reduced by Ti(III) more rapidly in a PVA environment than in water.
- TADP3-(COOH)₂ is a modified ligand suitable to be covalently bound to the support.

Attachment of TADP3DC to PVA

Assay of Functionalization of PVA

- Spectrophotometric determination of substituted benzene rings (λ_{max} = 298 nm) is a rapid and reproducible method to assay the degree of PVA functionalization (~10%)
- Cross-linking of PVA chains is likely to occur, due to the presence of two p-COOH groups on the ligand.

Results

- Ti^{III} is stable in the presence of PVA (in .2M acid) for more than two weeks.
- Ti^{III} reacts with perchlorate more than two orders of magnitude faster in the presence of PVA than in its absence.
- The PVA surface environment favors reaction.

Heterogeneous Catalysis

- In .2 M acid ,Ti^{III} absorbed on ligand-modified PVA, reacts with perchlorate *more than two orders of magnitude faster* than does Ti^{III} absorbed on PVA.
- Ti^{III} is in excess over ligand.
- The PVA-fixed ligand is an effective catalyst.

A New Chemical Principle

 Ligands that favor dinuclear complex-formation, when attached to a semisolid support with an alcohol-like surface, act as effective catalysts for reduction of perchlorate ions by Ti^{III}.

• The sample system increases rate > 10000 fold.

Prospects

- Ti^{IV} can be reduced to Ti^{III}
 - chemically
 - electro-chemically
 - photo-chemically
- Flow and batch systems can be developed to use this new chemical principle for destruction of perchlorates.

Advantages

- Titania (TiO₂) is cheap, abundant and environmentally benign.
- Optimization of ligand, support-system, and regeneration method can yield rapid, cheap, and safe methods of perchlorate disposal.

Contact Information

- Kelli Watson, esq.
 Technology Development Serv.
 Georgetown University
 Washington, DC 20057
 Watsonk @georgetown.edu
 (phone: 202-687-8583)
- Joseph E. Earley, Sr.,
 Department of Chemistry,
 Georgetown University
 earleyj@georgetown.edu
 (phone 202-687-5591)